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Abstract Soft molecular electrostatic potentials (SMEP or SEMP) have been recently
defined substituting the point-like proton by a Gaussian positive charge distribution.
In the present paper an additional step is taken forward, transforming SMEP into a
completely soft MEP (CoSMEP). Such transformation is carried out using a charge
distributed proton as in SMEP and also a Gaussian positive nuclear charge distribution,
instead of the classical point-like nuclear charges. The general form of MEP is roughly
preserved, but new features can be noticed. Such new point of view is also associated
to the possibility to redefine the molecular charge density. Definition of CoSMEP is
thus connected to the definition of total molecular density functions (DF), where to the
negative electronic DF is summed up the soft nuclear DF, made of linear combinations
of Gaussian distributions of nuclear charges.

Keywords Molecular electrostatic potential (MEP) · Soft MEP (SMEP) ·
Completely soft MEP (CoSMEP) · Soft Gaussian nuclear charge distribution ·
Total density function

1 Introduction

Molecular electrostatic potentials (MEP), were originally described by Scrocco and
coworkers1, see for instance reference [1]. The concept has not evolved very much

1 Initially the term used by these authors was electrostatic molecular potential (EMP). As an homage to
Professor Scrocco we preserved the original naming and acrostic, appearing in the previous papers on the
soft EMP subject. With time the name has changed to molecular electrostatic potential (MEP) and from
now on, the name and acrostic it will be adopted in this form.
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from the original times form, but multiple applications have been described, see for
example the assorted references [2–12]. Nowadays MEP can be considered as a rou-
tinely employed quantum chemical tool.

Because of quantum similarity measure computational needs, see for instance ref-
erences [13–15] the so-called atomic shell approximation (ASA) to construct simple
molecular density functions (DF) has been described and used in many instances, see
references [16,17]. Some old studies were performed on employing ASA to com-
pute MEP, see reference [18]. Recently, some renewed interest in the connection of
EMP with ASA has been put forward [19]. More recently, two papers, devoted to the
description of soft MEP (SMEP)2 [20,21], have been published. SMEP was straight-
forwardly calculated just substituting the interacting proton by a Gaussian distribution,
while preserving the point-like molecular nuclear charge distribution.

In the present study it will be proposed to take a new step forward, based on
a previous study [22], by substituting the positive nuclear point-like charges by a
soft positive nuclear charge distribution, made of a linear combination of normalized
Gaussian functions, whose coefficients are the nuclear charges. In this way a total DF
can be also defined summing up the nuclear contribution to the electronic DF. The
resulting MEP, computed through the interaction of a soft proton with the total DF,
will be named as completely soft MEP or CoSMEP.

In order to achieve this computational project at the stage of its mathematical devel-
opment, the present paper will be organized in the following way. First the construction
of soft Gaussian nuclear charge distributions will be discussed. Then CoSMEP will
be defined and the needed integrals over Gaussian functions will be provided. Finally,
some graphical examples of CoSMEP will be presented and a discussion on the main
features encountered given.

2 Soft nuclear charge distributions and density functions

As a starting point of this study it will be discussed the construction of a nuclear charge
distribution on a continuous basis, instead of the classical point-like distribution used
within the Born–Oppenheimer approximation [23].

2.1 Classical hard Dirac’s nuclear charges distribution

Point-like molecular nuclear charge distributions under Born–Oppenheimer approxi-
mation, can be described using a linear combination of a Dirac distributions set, see
for example [24], centered at the nuclear sites in a given arbitrary molecular frozen
conformation. This situation can be written, for instance, using the expression:

ρD (r) =
N∑

I

Z I δ (r − RI ), (1)

2 Due to the dual nomenclature, described in the previous footnote, the previous papers on soft MEP in our
laboratory have named the soft electrostatic potentials as SEMP, instead of SMEP, a new term which will
be used from now on.
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where N is the number of involved atoms, {Z I |I = 1, N } are the nuclear charges and
D = {δ (r − RI ) |I = 1, N } is a set of Dirac’s delta functions centered at the atomic
positions: {RI |I = 1, N }. Each function in the set D is Minkowski normalized, that
is integrates over the whole space to unity:

∀I : 〈δ (r − RI )〉 =
∫

D

δ (r − RI ) dr = 1

Such nuclear charge distribution or DF written like in Eq. (1) can be consid-
ered equivalent to describe a set of positive nuclear charges possessing no space
extension.

2.2 Soft Gaussian nuclear charges distribution

Nothing opposes, though, to transform the point-like nuclear charge distribution (1)
into a Gaussian charge distribution, using a set of Minkowski normalized Gaussian
distributions which can be defined as: G = {γ (α |r − RI ) |I = 1, N }, and that one
can suppose constructed with an uniform exponent αas follows:

∀I : γI ≡ γ (α |r − RI ) =
(α

π

) 3
2

exp
(
−α |r − RI |2

)
→

〈γI 〉 =
∫

D

γ (α |r − RI ) dr =1.

When the Gaussian exponent tends to infinite, the set G has as a limit the Dirac’s
distribution set described in D. This is so because the well-known Gaussian-Dirac
distribution relationship holds:

∀I : lim
α→∞ γ (α |r − RI ) = δ (r − RI ) .

Then, the equivalent of the Dirac’s nuclear DF (1), can be generally rewritten in
terms of the Gaussian nuclear DF:

ρG (r) =
N∑

I

Z I γ (α |r − RI ) =
(α

π

) 3
2

N∑

I

Z I exp
(
−α |r − RI |2

)

=
N∑

I

Z I γI (2)

with the additional properties:

lim
α→∞ ρG (r) = ρD (r) → 〈ρG〉 =

∑

I

Z I = v = 〈ρD〉 ,
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where ν is the number of electrons in the neutral molecule. Equation (2) also shows
that the Minkowski normalization factor, which have been chosen as common to all the
Gaussian elements in the linear combination (2), acts as a scale factor of the Gaussian
nuclear DF.

Two characteristic points might be noted in connection of the above definitions.
First, while the classical Dirac DF (1) can be named as hard nuclear charge DF, the

family (2) can be named as soft nuclear charge DF’s, according to the nomenclature put
forward in earlier work [20,21], when dealing with a soft proton charge distribution
as generating SMEP.

Second, the localized weight of the Gaussian nuclear charge DF in the neighborhood
of every nucleus, is manifestly associated to the magnitudes of the nuclear charge itself
and the choice of the Gaussian exponent. In fact, the Gaussian exponent as it grows
produces a harder, more localized, charge distribution. Approximately a sphere of
radius r = 2α−1au contains around a 95 % of the associated atomic charge. Then,
taking a Carbon atom as an example, using α = 2 implies that a charge of around 5.7
is contained into a sphere of one au radius.

2.3 Total soft molecular density function

Moreover, the finite structure of the Gaussian nuclear charge DF of type (2) everywhere
in space, permits to consider the possibility to define a total molecular DF: ρT (r) by
means of adding the electronic DF: ρe (r)to the nuclear charges distribution: ρG (r),
that is:

ρT (r) = ρG (r) − ρe (r) . (3)

Because of this definition, in neutral molecular structures, the molecular total DF
has a null Minkowski pseudonorm, as one can easily compute the involved integrals
in the form:

〈ρT 〉 = 〈ρG〉 − 〈ρe〉 = ν − ν = 0.

2.4 Overlap selfsimilarity in soft total density functions

Overlap selfsimilarity integrals for quantum objects correspond to a well-defined
numerical quantity associated to quantum similarity, see for example references
[13,14]. It corresponds in the present context to the integral of the Euclidean norm of
the total soft molecular DF, that is:

θT =
〈
|ρT |2

〉
=

〈
|ρG |2

〉
+

〈
|ρe|2

〉
− 2 〈ρGρe〉 = θG + θe − 2	Ge, (4)

where the symbol θ is used to denote selfsimilarity and the corresponding capital 	

as representing the similarity integral between two DF, see for example [14].
An interpretation of the above result can be done as follows. The two first terms

of Eq. (4) correspond to the nuclear and electronic selfsimilarities associated to both
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involved DF, while the third one corresponds to the similarity integral between the soft
Gaussian nuclear distribution and the electronic DF. Moreover, the total selfsimilarity
resulting expression can be also associated to a squared Euclidian distance: D2

Ge
between the two DF components, because it can be also written:

D2
Ge =

〈
|ρG − ρe|2

〉
= θT . (5)

The total selfsimilarity definition in Eq. (4) will become zero if and only if the
two nuclear and electronic DF components become exactly the same function, that is:
ρG = ρe → 〈θT 〉 = 0. Although this condition corresponds to a situation which hardly
will be met, provided the oversimplified expression of the nuclear charge distribution
(2). Considered as a squared Euclidian distance, total molecular selfsimilarity will
be positive definite in any circumstance other than the one of nuclear and electronic
DF coincidence. Therefore, because of this intrinsic positive definiteness, it will be
equally certain that the following inequality will hold:

θT ≥ 0 →
〈
|ρG |2

〉
+

〈
|ρe|2

〉
≥ 2 〈ρGρe〉 .

Soft nuclear Gaussian DF selfsimilarity can be easily computed, taking into account
that the overlap between two unnormalized Gaussian functions can be expressed as:

∀I, J : 	I J =
∫

D

exp
(
−α |r − RI |2

)
exp

(
−α |r − RJ |2

)
dr

=
( π

2α

) 3
2

exp
(
−α

2
|RI − RJ |2

)
,

therefore using expression (2) one can write:

〈
|ρG |2

〉
=

(α

π

)3 N∑

I

N∑

J

Z I Z J 	I J =
( α

2π

) 3
2

N∑

I

N∑

J

Z I Z J exp
(
−α

2
|RI − RJ |2

)
.

In order to grasp a particular form of such a selfsimilarity measure attached to
nuclear soft charge distributions, one can choose a homonuclear diatomic molecule
as a particular test case. If the involved atoms have both chargeZand are located at a
distanceR, then the nuclear selfsimilarity could be written easily as:

〈
|ρG |2

〉
= 2Z2

( α

2π

) 3
2
(

1 + exp
(
−α

2
R2

))
.

2.5 Origin shift and total density functions

Recent research performed in our laboratory on origin shifting performed over DF
sets resulted in several publications [25–30] dealing with the theoretical geometrical
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background and the applications. It is obvious that the total DF definition, expressed
as can be found in Eq. (3), corresponds to a natural origin shift of physical origin
and issued from the respective charge distribution signs, which induce the Gaussian
nuclear DF origin shift performed by the electronic DF. Although in reverse terms, it
will be also valid from the geometrical point of view to speak of the origin shift of
the electronic DF by means of the Gaussian nuclear DF. As a result of either point of
view, the angle between both functions is meaningless [25,30], but not the Euclidian
squared distance as defined in Eqs. (4) and (5).

All these interesting simple definitions and relationships could have not been spec-
ified within the classical Dirac’s nuclear DF model, as written in Eq. (1). The ori-
gin of this extended set of properties of the total DF is founded on the assumption
that the nuclear charges are no longer point-like, but extended within three dimen-
sional space by some amount, which will depend upon the magnitude of the Gaussian
exponent.

3 Completely soft electrostatic molecular potentials

After defining the total DF as in Eq. (3), the definition of CoSMEP is immediate.
However, to complete the MEP definition, beforehand it must be well-defined the soft
proton DF, see for example references [20,21], in the way the soft nuclear Gaussian
DF has been constructed. A soft proton charge distribution centered at the three dimen-
sional space position RH surrounding a given molecule, can be easily defined as the
Minkowski normalized Gaussian function:

ρH (r) =
(

β

π

) 3
2

exp
(
−β |r − RH |2

)

in the way it has been previously employed [21] when defining SMEP. Then, the
CoSMEP can be computed with the Coulomb expression:

V (RH ) =
〈
ρT (r1) |r1 − r2|−1 ρH (r2)

〉
=

∫

D

∫

D

ρT (r1) ρH (r2)

|r1 − r2| dr1dr2. (6)

Of course, the CoSMEP in the above equation will have two parts, according to the
definition of the total DF in Eq. (3), that is:

V (RH ) = VG (RH ) − Ve (RH )

=
〈
ρG (r1) |r1 − r2|−1 ρH (r2)

〉
−

〈
ρe (r1) |r1 − r2|−1 ρH (r2)

〉

The electronic contribution Ve (RH ) might be exactly expressed as in the SMEP
case [21] and thus will be not repeated here. The soft nuclear part VG (RH ) is quite
straightforward, as it will possess the structure of Coulomb repulsion between pairs of
positive Gaussian charge distributions. The needed integrals implying every nucleus
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interacting with the proton, are readily computed, as they correspond for the I -th
nucleus to the simple expression:

∀I : VG I = Z I

〈
γ (α |r1 − RI ) |r1 − r2|−1 ρH (r2)

〉

= Z I

(
αβ

π2

) 3
2
∫

D

∫

D

exp
(−α |r1 − RI |2

)
exp

(−β |r2 − RH |2)
|r1 − r2| dr1dr2

= 2Z I

(
αβ

π (α + β)

) 1
2

F0

(
αβ

α + β
|RI − RH |2

)

where use is made of the incomplete gamma function: F0 (t), see for example reference
[31]. Thus, the needed integrals are well-defined and the corresponding CoSMEP
easily available.

Practical use of the integral expressions demands besides computational simplicity,
coherence about the nuclear density representation. In this sense the proton probe,
considered as a hydrogen nucleus, cannot be different from the molecular hydrogen
nuclei.

So, the two Gaussian exponents, which have been considered different for the sake
of generality in the previous deduction yielding the above equation, one can also admit
they might be the same: α = β. Thus, the former above integral expression can be
reduced to the simpler scaled incomplete gamma function:

VG I = Z I

(
2α

π

) 1
2

F0

(α

2
|RI − RH |2

)
.

The most interesting facet of CoSMEP, which the previous SMEP formulation also
possessed [20,21], lies in the fact that when the proton is coincident with any nuclear
position coordinate, that is: RI = RH , then the corresponding term VG I remains finite
as well as the total CoSMEP does.

Such a finite characteristic behavior is extremely important when two or more MEP,
associated to different molecular structures, have to be compared in a similar way as
DF are, within an appropriate quantum similarity theoretical formalism [13,14,28].
This issue will be studied elsewhere.

4 Some graphical examples of total DF and CoSMEP

In this section, several kinds of molecular maps will be shown for two chosen mole-
cules. The ASA description [16,17] for electronic density functions has been cho-
sen in all the examples. When representing the CoSMEP, due to the reasons already
expressed, the two relevant exponents α and β as discussed in the previous paragraph,
are set to be equal in each figure. For each series of DF maps, the electronic DF pro-
vides a unique map for each molecule, whereas nuclear and total DFs are depending
on the chosen nuclear exponential parameter.
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It must be also noted that the electronic DF by itself is non-positive definite, despite
that here the given representation is shown in absolute value, when it is separately
drawn. Regarding the nuclear and the total DFs, the first one is non-negative definite
everywhere and the later in non-definite as it can be positive or negative depending
on the spatial regions considered. In all the maps shown, each picture bears its own
optimal scaling to make visualization easier.

Figure 1 shows a series of CoSMEP maps for 1-methoxy-2-nitrobenzene molecule.
The values for the exponents α = β where set to 1, π and 10.

As it can be seen from Figure 1, increasing the exponential parameters leads to
sharper MEP peaks. Such behavior appears because both the nuclear density and the
probe proton charges become more localized. The chosen sequence of parameters
provides a graphical deformation which tends to the classical point-like charges limit,
where both exponents will be formally set to be infinite.

Figure 2 shows 1-methoxy-2-nitrobenzene electronic DF absolute values according
to an ASA description. The total DF is obtained when the electronic DF is subtracted
from the nuclear one. Figure 3 shows the nuclear and total DFs obtained for each value
of the exponential parameter. One can note the obvious fact that while the exponential

Nuclear and probe exponents ( = )
1 10

Fig. 1 CoSMEP for 1-methoxy-2-nitrobenzene. The values for α = β exponents are 1, π and 10. The
representation is made by the computed potential function values on the molecular ring plane points

Fig. 2 Absolute value of the electronic DF for 1-methoxy-2-nitrobenzene. The representation is made with
the DF values obtained on the ring plane points

123



1780 J Math Chem (2013) 51:1772–1783

Nuclear exponent
Density
function

1 10

Nuclear

Total

-Total

Fig. 3 Nuclear, total and sign reversed total DFs, obtained for each chosen exponential parameter for
1-methoxy-2-nitrobenzene. From left to right, in each column the nuclear exponent values are 1, π and 10.
The representation is made with DF values computed on the molecular plane points

Nuclear and probe exponents ( = )
1 10

Fig. 4 CoSMEP representation for the molecule of aldosterone. The values for α = β exponents are 1,
π and 10. The representation has been chosen with the potential function values within the points of the
plane defined by the fused rings

parameters increase, the (positive) nuclear density increases and becomes the relevant
part of the map. For the exponents 1 and π , the electronic DF, the negative part of
the total DF, dominates. In order to visualize this effect, in Figure 3 it has been also
represented with inverted sign the total DF.

In order to test both CoSMEP and total DF for a larger molecular structure, Figure 4
shows CoSMEP for the molecule of aldosterone computed with an electronic DF
within an ASA scheme. The values for the exponents α = β have also set to 1, π and
10. The pictures show how, as expected, the same behavior, formerly noticed in the
1-methoxy-2-nitrobenzene case, is reproduced: the sharper MEP peaks appear for the
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higher exponential parameter values. Therefore a continuation of this sequence will
lead to the classical nuclear point-like charges limit.

Figure 5 shows the aldosterone electronic DF computed with an ASA model and
Fig. 6 is the corresponding series of nuclear and total DFs. As in the former example,
when the exponent is set to 1 the electronic part is the relevant one. On the other
side, when the parameter is equal to π , for aldosterone the nuclear DF starts to be the
relevant one.

Fig. 5 Electronic DF for aldosterone along the points of the molecular plane defined by the fused rings

Nuclear exponent
Density
function

1 10

Nuclear

Total

-Total

Fig. 6 Nuclear, total and sign reversed total DFs obtained for each exponential parameter for the aldosterone
molecule. From left to right, in each column the nuclear exponent values are 1, π and 10. The representation
is provided along the points of the molecular plane defined by the molecular fused rings
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5 Discussion

Theoretical definition of CoSMEP and total DF has been also practically extended
here with some practical computation leading to graphical examples. The presented
results preclude that modified nuclear charge density functions might become useful
quantum chemical tools.

From perusal of the provided examples it seems that both molecular functions can
be employed within a range of values, associated to the nuclear charge distribution
sharpness. Such possibility provides in the case of CoSMEP more fuzzy potential
function patterns as the DF nuclear exponents are nearby the unit and localizes or
sharpens them as the exponents are chosen larger. Such behavior must be certainly
expected because, as larger the exponents are the nuclear DF becomes nearby the
point-like nuclear charge limit.

Apparently, nothing opposes to use such Gaussian charge distribution approach
to describe nuclear charge distributions in general, within a soft molecular structure
definition, and in association with more accurate electronic ab initio DFs, which can
safely substitute the present electronic ASA DF approach.

At any computational level CoSMEP functions will be anywhere finite.
In this way, the possibility of quantum similarity technical comparison of two or

more CoSMEP has been also set up.
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